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A review is presented of the numerous studies that have been undertaken to investigate the
likely interaction-activity connection among galaxies. Both observational evidence and theoretical
supporting models are reviewed. Some specific examples of "interactive" galaxies from the author's
own research are presented: (a) the collision-induced AGN activity in the radio jet source 3C278;
and (b) the collision-induced starburst activity in the spectacular "Cartwheel" ring galaxy. Some
comments are offered concerning some of the more promising theoretical investigations that are
now taking place. A few words of warning are also offered about the possible misinterpretation of
putative collision-induced morphologies among some galaxy samples.

1. PRELIMINARY REMARKS

Activity in galaxies has been the subject of increasingly intense study for

nearly half of a century ever since the discovery of unusual emission lines in the

nuclear spectra of some galaxies by Seyfert (1943), the optical identification of

powerful radio sources with certain extragalactic objects (e.g., Baade & Minkowski

1954a,b), and the discovery of quasars (Schmidt 1963). The idea that interactions

between galaxies may be related to the observed activity was suggested by Baade &

Minkowski (1954b), with a similar suggestion by Arp (1966). While much work was

done on active galaxies following these discoveries, a plausible physical model for

this interaction-aetwity (I A) connection was first elaborated upon (using graphic

metaphorical language) in the bold hypotheses of Toomre & Toomre (1972) and

Gunn (1977) that interactions could actually "stoke the furnace", or "feed the mon-

ster", in active galactic nuclei (AGN). Further evidence of tidally-induced activity

came to light when Larson & Tinsley (1978) noted that the colors of a subsample

of Arp's (1966) peculiar galaxies were consistent with recent star formation activity

when compared against an undisturbed control sample; Sharp & Jones (1980) and

Lonsdale, Persson, & Matthews (1984) later confirmed these findings.

In spite of these various suggestions, for a long time, research focussed more

on the "personal" activity within active galaxies and not so much on their "social"

interactions with their neighbors. Mergers and collisions among galaxies were at

best all interesting side issue in the field of active galaxy research at least, until

recently (see the review by Heckman 1990 and the papers in Shlosman 1994).



2. OBSERVATIONAL EVIDENCE FOR THE I-A CONNECTION

The study of interacting and merging galaxies has become very active in the

last decade, due in large part to the discoveries by IRAS that the most IR-luminous

galaxies are nearly all products of galaxy collisions and that these may be the missing
link in the chain of evolution from quasars to normal quiescent galaxies (Sanders

el al. 1988a,b). These highly luminous galaxies have a higher space density than

quasars, emit >90% of their power in the IR, are rich in the raw materials of star
formation, and to a large extent owe their peculiar morphologies to encounters with

other galaxies. The physical processes at work here are hypothesized to be the same

as those at work in quasars tidally disturbed galactic gas loses angular momentum
in the tidal encounter and falls to the center of the galaxy, where it undergoes violent

dissipation (and probably star formation), ultimately collapsing into the galaxy's
nucleus, where it either falls into the lurking "monster" or else contributes to the

formation of the dense central star cluster that will itself ultimately form the massive

central black hole (i.e., the AGN engine; see Norman & Scoville 1988 and also the

reviews by Heckman 1991a,b).

The evidence for tidal phenomena in a plethora of different active systems

is now overwhelming: in quasars (e.g., Stockton & MacKenty 1983, 1987; Yee &

Green 1984; Hutchings & Neff 1988, 1990a, 1992b; Stockton & Farnham 1991;
Block & Stockton 1991; Bahcall et al. 1995; cf. Smith & Heckman 1990a), in

AGN (e.g., Dahari 1984; Keel et al. 1985; MacKenty 1989; Hummel et al. 1990;
Hutchings & Neff 1990b; MacKenty, Simpson, & McLean 1990; Mazzarella, Bothun,

& Boroson 1991; Keel & van Soest 1992; MacKenty et al. 1994), in radio_et galaxies

(e.g., Colina & P6rez Fournon 1990a,b; de Juan el al. 1993; Colina & de Juan

1995), in powerful radio galaxies (e.g., Heckman et al. 1986; Smith & Heckman

1989a,b, 1990b; cf. Smith & Heckman 1990a), in low-luminosity radio galaxies

(e.g., de Juan el al. 1994), in GHz-peaked-spectrum radio galaxies (Stranghellini

el al. 1993), in actively star-forming galaxies (= Starbursts; e.g., Joseph & Wright
1985; Bushouse 1986; Kennicutt et al. 1987; Kennicutt 1990; Smith & Kassim 1993;

Keel 1993; Smith el al. 1995), in IR luminous galaxies (e.g., Sanders et al. 1988a,b;
Lawrence el al. 1989; Armus 1989; Melnick & Mirabel 1990; Carico et al. 1990;

Hutchings & Neff 1991, 1992a; Majewski el al. 1993; Gallimore & Keel 1993; Leech

et al. 1994; Liu & Kennicutt 1995a,b; Soifer, this volume), and in galaxies with

strong central concentrations of molecular gas (e. g., Sargent & Scoville 1991; Scoville

el al. 1991). The particular importance of IR-luminous galaxies in the grand scheme

of cosmology and galaxy evolution has been underscored by the luminosity function

studies of Soifer et al. (1986), which have indicated that most galaxies have gone
through a high-IR luminosity stage. Studies of such objects are consequently of

great importance in determining the relationships between this evolutionary stage,

the galaxies' star formation histories, and the occurrence of interactions and mergers

among galaxies.

A tantalizing discovery of the past decade was the so-called "alignment affect"

in distant radio galaxies, wherein their radio, optical, and IR morphologies are

all aligned over many decades in wavelength (Chambers, Miley, & van Breugel

1987; van Breugel & McCarthy 1990; Chambers & Miley 1990). Whether this is

evidence for jet-induced star formation or for something else, it appears now that

the early stages of galaxy formation and star formation within galaxies may be



significantlyaffected,if notcontrolled,bygalacticactivity. Whilethiseffecthas
notbeenlinkedwith tidal processes,it neverthelessdemonstratesonceagainthat
the causesandphysicaldevelopmentof nuclearandstarburstactivityarelikely
relatedto theformationandearlyevolutionof galaxies,whichcertainlyinvolved
tidalinteractions(Kormendy1989;Kormendy& Sanders1992).

It is thereforeclearfromtheweightof evidencenowin handthat thereis an
importantconnectionbetweengalaxyinteractions(whichproducemorphologically-
peculiarstructures)andsomeformsof galacticactivity(seereviewsby Hernquist
1989,Stockton1990,andHeckman1990,andthepapersinShlosman1994).Given
thevastliteratureonthedemographicsof this I-A connection, from so many re-

search groups (e.g., Adams, Armus, Bushouse, Colina, Dahari, de Juan, Green,
Heckman, Hutchings, Illingworth, Joseph, Keel, Kennicutt, Lawrence, Lonsdale,

MacKenty, Mazzarella, Miley, Mirabel, Neff, Neugebauer, Sanders, Sargent, Scov-
ille, Soifer, Smith, Sopp, Stanford, Stockton, van Breugel, and Yee; to name a few),

there remains very little doubt that somehow the two sets of phenomena are related.

However, in spite of this wealth of observational supporting evidence, the precise

relationship between interaction and activity is difficult to characterize as several

studies have indicated that the majority of active galaxies do in fact show morpho-

logical signs of interaction, while other studies have shown that only a minority of

all interacting systems are actually endowed with corresponding signs of activity

(Smith & Hintzen 1991). This one sided relationship (or unbalanced dichotomy)

was noted very early by Baade & Minkowski (1954b), and by many others since
then. Thus, while morphological distortions may be good indicators of potential

sites of galactic activity, every interaction does not appear to produce the same type

or degree of activity.

The physics and "sociology" of the unbalanced I-A dichotomy may be related to

one very simple observation and one plausible assumption, as described below, under

the more general assumption that there is indeed a physical I-A connection. First,
we observe in numerical models that the dynamical effects of a strong encounter

are very long-lived (e.g., tidal tails are visible for one to two gigayears following

a strong collision). Second, we might plausibly assume that AGN activity has

a relatively short duty cycle (i.e., the activity is "turned on" for a fraction of

time significantly less than the time that the tell-tale signs of the interaction are

still present). Consequently, from these two statements, we can conclude that a

dichotomy would be expected in tile I-A connection: only a small fraction of all
galaxies that show signs of interaction will also show signs of activity, whereas

a large fraction of all active galaxies will show signs of interaction (either through

disturbed morphologies, disturbed kinematics, or nearby companions). Care should

be taken with such deductions however, and section 7 of this paper issues a warning

about overly simple interpretations of such effects.

3. NUMERICAL STUDIES OF THE I-A CONNECTION

Several groups have carried out theoretical studies of the problem of inducing

galaxy activity via tidal interactions. Some of the more relevant studies have used

an N-body particle dynamics codes modified in various ways to include simplified

gas dynamics (e.g., see the review by Noguchi 1990; see also Noguchi & Ishibashi

1986; Byrd ct al. 1986, 1987; Lin, Pringle, & Rees 1988; Noguchi 1988a,b, 1991,



1992;Hernquist1989;Olson& Kwan1990a,b;Barnes& Hernquist1991;Mihos,
Richstone,& Bothun1991,1992;Wada& Habe1992;Mihos,Bothun,& Richstone
1993;Hernquist& Well1992;Weil& Hernquist 1993; Bekki & Noguchi 1994; Heller
& Shlosman 1994; Lamb, Gerber, & Balsara 1994; Mihos & Iternquist 1994a,c,d,e,

1996; Hernquist & Mihos 1995; Bekki 1995). The main objectives of typical numer-
ical simulation experiments include:

Attempting either to find or to exclude appropriate collision scenarios for

active galactic systems (e.g., Taniguchi & Noguchi 1991; for a similar study of an
isolated system, see also Knapen et al. 1995);

-- Testing the relevance of interactions to the observed activity (in terms of

mass transfer, gas shocking, nuclear gas accumulation, bursts of star formation,
burst/activity timescales, potential for chemical enrichment, etc.); and

-- Delimiting and parameterizing the range of collision models that lead to

potentially active systems.

The results of these studies will then have application in a number of broad areas,

including:

-- Classifying a wider variety of observed systems in the context of the de-

rived collision model parameter space within which activity is found to accompany
interactions; and

-- Predicting the expected properties, frequencies, and interrelations of inter-

acting, active, and IR- and/or radio-luminous galaxies both in the local universe

and at increasing redshift.

Particle+gas dynamics simulations are the cuhnination of a series of investi-

gations of ever-increasing complexity and physical reasonableness. Initial models

containing purely stellar dynamical effects have been supplanted by similar models

containing, in addition, simple hydrodynamic terms. Those models are subsequently

modified to follow the gas phase on a galactic scale and to include realistic effects:
gas shocking, cloud collisions, angular momentum loss, "star formation", nuclear

gas accumulation, etc. Each of these algorithmic steps has an important role and

each can contribute to our understanding of "interactive" galaxies. But, it is at the

last step in the code sequence where substantial new ground is being broken and

where our ability to test the I-A connection reaches its fullest potential.

In the area of interaction-induced starburst activity, additional power of in-

vestigation is gained through the application of stellar population synthesis and

population evolution algorithms to the numerical model results (e.g., Fritze-Von

Alvensleben & Burkert 1995; see also section 6 of this paper).

It has been shown that it is possible to model the optical morphological and

kinematic properties of merging and interacting galaxies with straightforward nu-

merical simulation techniques (e.g., Borne et al. 1994, and references therein), and

that the final collision solutions can be used to derive various physical and orbital

parameters of the constituent galaxies (Borne 1990b). Galaxy masses, shapes, spins,
and orientations, and orbital sizes, shapes, timescales, and orientations can all be

deduced to some level, depending on the quality and quantity of available data,

with particular dependence on the kinematic data (Borne 1988, 1990a,b). Merger

remnants like NGC 7252 with a very complicated morphology and very complex

kinematics can be reproduced in such simulations, even without including gas dy-

namical effects (Borne & Richstone 1991; tlibbard & Mihos 1995), and similarly for



othercomplexcollisionremnants(e.g.,smoke-ringgalaxies,asill Theys& Spiegel
1977),thoughtheinclusionofgasdynamicscanleadto spectacularlyimprovedre-
sults,asshownbyStruckMarcell& Higdon(1993)andMihos& Hernquist(1994d).

Onthewhole,simplestellar dynamical collision models can do a modestly rea-

sonable job at reproducing the optical observations of many interacting and merging
galaxies. However, if one also attempts to model the full complement of radio, in-

frared, and optical observations of tidally-disturbed active galaxies, then additional

input physics is required and nothing less than a full stars+gas simulation will suf-

fice (as demonstrated by the vast and growing literature referenced earlier). As an

example of what new results are being derived from among this rich literature of

investigations, I summarize here some of the highlights of the work presented by

Bekki & Noguchi (1994) and Bekki (1995):

-- They studied the merger of two gas-rich galaxies using a TREESPH simu-

lation algorithm (see Hernquist & Katz 1989).

-- The cores of the two galaxies sink to a common center and merge via dy-
namical friction.

-- The mutual orbiting of the two cores "stirs up" (i. e., dynamically heats) the

gas clouds.

-- Dissipative cloud cloud collisions drive _10SMo of disk gas into the central

10 pc. This corresponds to a dramatic improvement over the results of earlier models
in overcoming the angular momentum barrier that would prevent gas material from

being driven into the nucleus of the galaxy.

-- Most of the gas infall occurs after the two cores have coalesced (merged).

-- A recipe for star formation is included in their models.

-- A nuclear starburst is the primary energy source before the cores merge.

-- Accretion power (presumably onto an AGN) is the primary energy source

after the cores merge.

-- Retrograde encounters are most effective in fueling the nucleus since clouds

on such orbits tend to lose angular momentum and fall into the center, whereas

clouds moving on prograde orbits with respect to the orbiting cores tend to gain

large amounts of angular momentum and be expelled away from the center.

4. EXAMPLE-- AN INTERACTION INDUCED AGN: 3C278

As an example of interaction induced nuclear activity, we present here a sun>

mary of some recent work on one such source: 3C278, a curved radio_et source

whose host galaxy is strongly interacting with a nearby companion elliptical.

We have developed a numerical simulation algorithm for modeling the propa-

gation and morphology of ballistic radio jets in colliding galaxies (Borne & Colina

1993; hereafter BC). This algorithm has already been used quite successfully to

fit. the specific two sided jet morphology seen in 3C278, a Fanaroff-Riley type I

(FRI) radio source. The elliptical galaxy NGC 4782 is the host for 3C 278, which
shows an east-west oriented two-sided jet. with a C shaped structure having very

distinct bends in its morphology (see Fig. 1). The jet shape can be explained as

a consequence of its interaction with the companion galaxy NGC 4783. According

to BC, the observed deflections in the 3C 278 radio jets are primarily induced by

the sweeping action of the hot gas in NGC 4783 as it passes by. The binary orbital

parameters for the two colliding galaxies (NGC 4782/4783) were determined from



detailedopticalimagingandkinematicmeasurementsof thepair(Borne,Balcells,
& Hoessei1988;hereafterBBH),andtheseorbitalparameterswereusedasinput
to theradio-jetsimulations.

In theBCmodelstheevolutionoftheradiojetsisdeterminedbytheirresponse
to thetime-dependentmechanicalforces(i.e.,gravityandrampressure)that act
on theconstituentjet blobs.Ourmodelsconstrainthe initialjet parameters,the
propertiesofthehotgaseousmediumintowhichthejetsareejected,andtherelative
importanceof gravitationaldeflectionversusrampressurebendingin influencing
thejet morphology.Fromourspecificmodelofthetwo-sidedradiojet structure

FIGURE 1. ROSAT X-ray image of the NGC 4782/4783 pair of galaxies overlaid with the VLA

radio contours of the 3C 278 source (Baum et al. 1988). The radio source is centered on the peak

of the stellar distribution. North is up and east to the left. Galaxy NGC 4782 (the host for 3C 278)

is the southern elliptical in the image. Clearly noted in the figure are the distinct X-ray features

that are referred to in the text.



associated with 3C278, it was determined that ram pressure deflection by the hot

ISM is the dominant force affecting the morphology of the radio emission, and it was

found that the jet activity began just over 70 million years ago, roughly 50 million

years before the pericenter passage of the two galaxies, at which time the galaxies
were already substantially overlapping. This kind of study therefore permits us

to check in a quantitative way the onset of activity in galaxies being subjected to

the (kinematically observed) tidal shocks that are produced in deeply penetrating

galaxy collisions. Such shocks are seen in NGC 4782 (the host for 3C278) and in

NGC 4783 (BBH), thereby directly supporting the I-A connection for this particular

class of active galaxies (see de Juan et al. 1993, 1994; and Colina & de Juan 1995).

In order to verify the predictions of our hot gas-deflection model for the 3C278
radio jet and consequently to validate the physical parameters that relate to the

interaction-induced nuclear activity, we have obtained deep ROSAT HRI imaging

of the X-ray emitting gas associated with NGC 4782/4783 (Colina & Borne 1995).

The ttRI image presented in Figure 1 shows several remarkable features, observed

for the first time in a pair of close colliding galaxies: (1) the detection of hot gas
in the two galaxies NGC 4782 and NGC 4783 with their emission peaks displaced

with respect to the stellar luminosity peaks; (2) a high-surface brightness bridge
along the line joining the two galaxy nuclei; (3) tidal-like tails emerging from the

X-ray nuclei of the two galaxies; and (4) a sheet of gas at the interaction interface

between the two galaxies. All of these remarkable features reveal the complexity

of structure that develops in the hot gas distribution when both hydrodynamical

and tidal forces come into play during collisions between ellipticals with hot gas

components. These results also substantiate the major role played by the hot ISM,

and its asymmetries, in the propagation and entrainment of radio jets in colliding

radio host ellipticals. Further, our observations validate the general concept of gas
mass redistribution during galaxy encounters, which is the fundamental basis for

expecting an I-A connection among galaxies.

The X-ray emission peaks associated with NGC 4782 and NGC 4783 are dis-

placed with respect to the peaks of the optical luminosity distributions by ,-,7"

(1.9 kpc) and ,,_4" (1.1 kpc), respectively. The detailed BBH orbital models for

the motion of NGC 4782/4783 indicate that NGC 4782 is currently moving to the

southwest while NGC 4783 is moving to the northeast. The central displacements
of the X-ray emission peaks are in the same direction as the tidal distensions seen

in the optical isophotes of the two galaxies, which is in the direction opposite to

the motion of the galaxies in tile BBH models. These displacements are consistent

with the idea that (a) both the X-ray emitting gas and the stellar mass distribution

are tidally distended by the gravitational interaction and that (b) the hot ISM in

each galaxy is being "pushed back" by ram pressure from the incoming hot gas of
the passing companion galaxy.

A high-surface brightness bridge is seen in the ROSAT image. This region of
high surface brightness, located between the two colliding galaxies, is expected as

a consequence of the compression of the hot interstellar media of the two galaxies

in precisely this region where the interaction of the two ISM is most intense.

The best BC model capable of explaining the positions and angles of the bends

in the 3C 278 radio jets predicts the presence of dense hot X-ray emitting gas with

these distinct properties: (1) it should be displaced with respect to the center of the

3C 278 radio source (i.e., away from the nucleus of NGC 4782); and (2) it should



be asymmetric with respect to the east and west jet. The predictions of the BC

model are in close qualitative agreement with what is observed in the ROSAT/HRI

image. In particular, the prediction that the east jet should be encountering a

more dense and asymmetric hot gas component than the west jet is beautifully

shown in the VLA/ttRI overlay image in Figure 1. The success of the interaction

model for explaining the optical, radio, and X-ray characteristics of 3C278 therefore

supports the idea that the radio activity was indeed induced by the redistribution

and transfer of gas mass into the galactic nucleus during the collision, thus providing

direct physical evidence for the I-A connection.

5. EXAMPLE -- AN INTERACTION-INDUCED STARBURST: THE

CARTWHEEL RING GALAXY AM0035 335

As an example of interaction-induced starburst activity, we present here a

summary of some recent work on one such source: the "Cartwheel" ring galaxy,

number AM0035 335 from the Arp & Madore (1987) catalog of southern peculiar

galaxies.

Of the many types of interacting and merging galaxies known, the rare and

beautiful smoke-ring galaxies are among the most straightforward to interpret dy-

namically. Since the pioneering models of Lynds & Toomre (1976) and Theys

& Spiegel (1977) it has become accepted that many "classical" ring galaxies are

formed from a head-on collision between a small intruder galaxy and a larger disk

system. The ring forms as gas and stars are crowded into an expanding wave that

moves radially through the disk. The passage of the wave triggers vigorous star

formation in the rings and provides us with a remarkably simple example of den-

sity wave-induced star formation (Jeske 1986; Appleton & Struck-Marcell 1987a,b;

Struck-Marcell 1990; Gerber 1993; Struck-Marcell & Higdon 1993; Gerber & Lamb

1994; Mihos & tlernquist 1994d). Recent ground-based observations of rings (Mar-

cure, Appleton, & Higdon t992; Marston & Appleton 1995; Higdon 1995) reveal

stellar evolutionary effects in and behind the expanding rings that strongly support

tile collisional picture. The Cartwheel ring galaxy presents unusually strong density

wave-induced starburst activity in the wake of the collision event that formed the

ring.

Unlike many regions of massive star formation found in astronomy, the site of

the youngest (most massive) stars in rings is continually expanding, leaving behind

in its wake a trail of evolving stars. The high spatial resolution of the Hubble Space

Telescope (HST) provides an exciting opportunity to investigate the properties of

massive OB associations formed in this expanding wave and provides a glimpse

into the formation sequence of the most massive stars found in nature. The most

dramatic changes are likely to occur on the leading edge of the expanding wave

where the most massive stars will be found. These H II regions are dominated by

stars more massive than 10 M®, whose lifetimes are typically less than a few times

107 years. If such stars were born on the edge of a ring expanding at typically 100

km/s into the surrounding disk, then the extremely massive O stars would exist

in a band only 0.3 kpc wide. At the typical distance of a ring galaxy (100 Mpc)

this corresponds to about 0.6". It is therefore evident that, in order to investigate

the formation and distribution of the most massive stellar associations within such

H II regions, we require the very high angular resolution of the HST. Furthermore,



since the number of nearby "canonical" smoke-ring galaxy candidates is quite small

(i.e., the best of the nearest examples have redshifts in the range ez _ 6000 -
9000 km s-a), analysis of the crucial questions related to star-formation behavior

across the expanding ring density wave demands HST resolution. A number of

these systems show remarkable fine-scale structure in ground-based images (e.g.,

the Cartwheel has a dazzling array of knots and spokes), but most of the details

in those structures are simply unresolved from the ground (e.g., the distinction

between a single super star cluster versus a collection of clusters). The real business
of measuring spatial (hence temporal) variations in the density wave-induced star

formation is occurring on scales that only HST can begin to resolve.

We have used the HST to obtain several blue-band and I-band images of two

ring galaxies: the Cartwheel ring galaxy and II Zw 28. A detailed description of the

Cartwheel galaxy results are presented elsewhere in this volume by Lucas et al. (see

also Borne et al. 1996a,b; and Struck, Appleton, Borne, & Lucas 1996). Figure 2

presents a B - I image of the Cartwheel galaxy, as derived from the HST images;

the colors are shown in a very exaggerated form in order to highlight the true B- I

color variations, which are nevertheless quite strong and dramatic throughout the

galaxy.

In our images of the Cartwheel, fine structure is observed down to the resolution

limit of the HST images and very blue compact objects (perhaps massive young

star clusters) are found throughout the starbursting regions. The primary ring
around the galaxy is full of blue star-forming knots, which are well resolved in our

images. The "spokes" of the Cartwheel, which are interior to the primary ring, are

clearly visible, though their structure is somewhat more amorphous than that of the

outer ring, suggesting that indeed the massive star formation behind the expanding

density wave has subsided and the stellar associations that comprise the spokes are

dispersing as they age. There is a well defined secondary ring around the nucleus

(which is seen in numerical simulations at late times following the collision event),
and there is a lens (or disk) interior to that ring. This region is heavily reddened and

clearly full of dust. The images reveal a very fine structure in the dust distribution

around and interior to the secondary ring. A sharp point-like nucleus is seen within

the inner disk. Of the two nearest companions, the eastern most companion shows

some evidence of interaction, shows no evidence for star formation or gas, and

appears to be an SO galaxy. On the other hand, the western most of the two near

companions is very disturbed, shows strong evidence for star formation and gas, and

appears to be a disrupted late-type barred spiral or irregular. As to which galaxy
produced the Cartwheel ring, a distant third companion is seriously implicated by

recent HI 21cm maps as being the "bullet" that penetrated the Cartwheel progenitor

(Higdon, this volume; and I-Iigdon 1995).

The HST imaging observations of the Cartwheel ring demonstrate a wealth of

sharp features: star-forming knots, stellar clusters, arclets, bubble like regions, and

holes in the ring (blast regions?). The arclets, bubbles, and holes may be similar

to the vast multi-supernova-driven arc reported by Vader & Chaboyer (1995) for

NGC 1620. The knots and clusters (young globular clusters?) appear similar to

those that many authors have now reported in HST images of other interacting and

merged galaxies. These clusters are apparently forming in the shocked gas compo-
nents of the constituent gas-rich galaxies involved in the collisions. For a discussion

of these observations and their interpretation, refer to Holtzman et al. (1992), Whit-



FIGURE 2. Exaggerated true-color representation of the true B I color variations in the HST

images of the Cartwheel ring galaxy. Blue shades identify regions with small B-I, and red shades

correspond to regions with large B-I. North is to the upper left, and east is to the lower left.

Note the very red inner ring and core region, the diffuseness and intermediate color of the spoke

region, the very blue regions of the outer ring, the radial color gradients across the outer ring

(especially the different color gradients on the north and south sides), and the azimuthal color

gradients around the outer ring (especially the intense star formation in the southern section of

ring). Note also the distinct differences in the colors (hence star formation rates) in the two nearby

companion galaxies. The red companion (an SO galaxy) shows a very faint tidal tail extending to

the east, on the side opposite the blue IRR companion. The blue companion shows a sharp blue

ridge of star formation to the northwest, on the side opposite the SO companion. These latter two

effects are consistent with a mutual interaction between these two companions, not necessarily

involving an interaction with the Cartwheel galaxy. The intruder "bullet" galaxy that generated

the Cartwheel's ring morphology is likely a third more distant companion to the north (not shown

here; but see Higdon, this volume).



more et al. (1993, 1995), Shaya et al. (1994), Conti & Vacca (1994), Whitmore &

Schweizer (1995), Whitmore (this volume), and Zepf (this volume). We believe

that we are seeing a very rich population of similar objects throughout the outer

Cartwheel ring, all of which (in addition to the bubbles and arcs) are a consequence

of the interaction-induced starburst activity in this system.

6. PROMISING NEW DIRECTIONS

Section 3 provided a detailed list of the many theoretical studies related to the

I-A connection (i.e., the triggering of galactic activity through galaxy-galaxy colli-

sions). The more advanced of these include some combination of N-body stellar dy-

namics and SPH (smoothed particle hydrodynamics): for example, the TREESPH

simulation algorithm of Hernquist & Katz (1989). Significant advancements in

our understanding of interaction-induced starbursting systems in particular are

now being made by various groups who are including additional stellar population

synthesis results and stellar evolution tracks in their studies (e.g., Fritze-Von Al-

vensleben & Gerhard 1994a,b; Fritze-Von Alvensleben & Burkert 1995; Mihos &

Hernquist 1994b). The work of Fritze-Von Alvensleben and her research group (see

Fritze-Von Alvensleben, this volume) is quite promising and is already providing

new insights into the ages and dynamical histories of these highly "interactive" sys-

tems, especially for the young star clusters discovered in HST images of interacting

galaxies.

7. CAVEAT EMPTOR

As a pilot observational study of the interaction activity connection, Borne &

Scott (1990) investigated the environmental properties of the most intensely active

and tidally disturbed sample of "nearby" galaxies, the ultraluminous IRAS galaxies.

We report here the results of that. study and point out a simple erroneous conclusion

that could easily have been derived from our results.

We examined the digitized all-sky scans that were used to produce the STScI

Guide Star Catalog in order to determine the projected density of non-stellar objects

around the galaxies comprising the Ultraluminous IR Galaxy Sample and the Warm

Ultraluminous IR Galaxy Sample (Sanders et al. 1988a,b). Each of the 19 galaxies

identified in the combined sample appears to be undergoing a major starburst event.

Furthermore, from the distorted appearances of most of the galaxies, the starburst

has apparently been triggered by a recent interaction with another galaxy (see also

Soifer, this volume). The spatial frequency of galaxies in the neighborhoods of

these IR-bright galaxies can therefore provide some indication of the likelihood and

frequency of such collisions.

We measured the number of non-stellar objects in fields 30-arcmin square

centered on each of the galaxies in these samples, and in two similarly_sized adjacent

fields (one each to the immediate west and east of the primary field). We found

that there is no significant difference in the local projected galaxy density around

the 19 slarbursting ultraluminous IR galaxies from that in the adjacent fields. We

also found that these galaxies inhabit a wide range of environments, from low to

high-density: with a range of projected densities _ 20- 260 non-stellar objects per

square degree, down to our limiting instrumental magnitude. These conclusions

might lead one to conclude (erroneously) that interactions played a minor role in



the formation of such systems. But, this is not the best interpretation of the results

and it is actually a misleading conclusion about the significance (or lack thereof) of

interactions in producing the observed starburst activity.

If the galaxy density around these strongly starbursting galaxies had in fact

been higher than that of the adjacent fields, then the interaction hypothesis for the

origin of the starbursts would apparently have been supported. However, if that were
true, then it would be hard to understand how these galaxies could have avoided

until the present epoch a rapid gas-exhausting starburst event of the type that

they are now experiencing. Conversely, if the galaxy density around these starburst

galaxies had been significantly lower than in the adjacent fields, then galaxy-galaxy

collisions would have been very rare indeed, making it extraordinarily difficult to

explain their apparently tidally disturbed morphologies and young starburst ages.

But, if their local galaxy densities were basically similar to that of the surrounding
field galaxy population (as is actually observed), then each of these galaxies could

have maintained a dense ISM until late times, at which point a single random colli-

sion would produce both its very disturbed morphology and the currently observed

"once-in-a lifetime" major starburst event, thereby permitting the galaxy to be

included in the present Ultraluminous IR Galaxy Samples.

Given the insignificant difference in the projected galaxy densities around these

disturbed ultraluminous IR galaxies compared to that in adjacent fields, and given

the wide range of local galaxy densities in the neighborhoods of these galaxies, we

conclude that galaxy interactions may indeed be responsible for these starburst

events (as already implied by their disturbed morphologies) and that such events
are occurring at the present epoch in a random, environment-independent man-

ner. This conclusion contradicts the superficial initial interpretation of the results,

which would have suggested that the absence of a systematically enhanced den-

sity of companions around these galaxies necessarily precludes their formation via

tidal interaction processes. In this and similar studies, one must therefore beware

of deriving overly simple conclusions based solely on the presence or absence of

companions (or on the presence or absence of a distorted morphology) without
additional evidence or without the application of additional physical parameters.

8. SUMMARY REMARKS

The study of interacting galaxies has become very diversified and very pro-

ductive in recent years. One of the clear results of these manifold studies is the

apparent causal connection between some interactions and various forms of activity

within the participating galaxies. This Interaction-Activity (I-A) connection now

has overwhelming observational support. Considering the preponderance of active

galaxies in high-redshift samples of galaxies (selected on the basis of high IR or
radio flux), deeper observational analysis and investigation of this I-A connection

holds promise for offering tremendous insight into the formation and evolution of

galaxy-scale structures throughout the universe (e.g., Mihos 1995).

Theoretical investigations of the I-A connection provide a general frame of ref-

erence from which to study both the physical processes involved in generic collisions
between galaxies and the generation of activity in various specific classes of objects

(e.g., starburst galaxies, ultraluminous IRAS galaxies, low- and high-luminosity

radio galaxies, high-redshift radio galaxies, and quasars). Since such objects are



strongemittersin variouswavebands,theyarevisibleto largedistancesandare
thereforeveryrelevantto generalinvestigationsof theevolutionandstructureof
galaxies,aswellasbeingapplicabletostudiesoflarge-scalestructure.

The powerandrealismof the theoretical,numericalmodelsthat arebeing
appliedto studiesof the I-A connection are now quite impressive and the models
are rich in physics (dynamical, hydrodynamical, and chemical). Such studies are

consequently helping to answer some of the fundamental questions that have arisen

from the wealthy accumulations of observations on active galaxies: Is activity in

galaxies actually triggered by tidal interactions? And: What is the validity and
relevance of the 1-A connection for the origin, structure, and evolution of galaxies
in the universe?
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